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ABSTRACT. The Wiener transformation (integrated Fourier transformation) on 

the space B2 = {f: jffl = supT?1(-T f 12)1/2 < oo} is studied. 

1. INTRODUCTION 

In the celebrated paper on generalized harmonic analysis [ 12], Wiener proved 
the following identity 

(1.1) )im2T|fIf(x)I dx= lim If IA,g(u)l du, 

where g = W(f) is the Wiener transformation (integrated Fourier transforma- 
tion) of f defined by 

(1.2) g(u) = I!- (I + f(x)e dx + f f(x) e 
dx) 

and Alg(u) = g(u + e) = g(u - e). He then used the identity to study the 
almost periodic functions, and the spectrum and ergodicity of sample paths in 
his pioneer work of stochastic processes. 

The class of functions in (1.1), however, is not closed under addition. Two 
natural Banach spaces to be considered in this respect are 

BP = {fE LP(R): IIfIIB = sup (I jf(x)jlp dx) 1/ } lo 
T>1 (2TAT)) 

and 

V , g (E L,c (R): 1 g 1 vp = lsup (eg(u)lp du) < x4 lo I 
1~= >8>O '2CJ, 
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where 1 < p < 00. In this case, functions in (1.1) can be considered as sub- 
classes of the quotient spaces B2/BO and V2/ 2, where 

BP={f EBP: lim~ -f fxI=} ? T too 2T |-T i 
= ( o 

and 
1 00 A "'d=A 

VPP={gEVP: lim u | A,g(u)JPdu=0 0 8~~~---o+ 2e 

The spaces BP had been considered by Beurling in [3]. He defined a convo- 
lution algebra AP, < p < x, by 

A" = {f IiIAP= f (f ff"&~"1)) 1/p AP= f: lIfIlAl p lflpw- < o 

where Q is the set of bounded, positive, integrable even functions w which 
are nonincreasing on R+ and 

t(O) + fw(x) dx = 1. 
-00 

It is easy to show that A1 = LI, and AP can be continuously embedded into 
L1 and Lp. 

Theorem 1.1 (Beurling). For 1 < p < oo, 1/p+ 1/q = 1, AP is a convolution 
algebra, and (AP)* is isomorphic to B . 

By regarding AP, Bq as an L1, L?0 analog (rather than the Lp, Lq analog), 
Chen and Lau [4] defined a class of functions, 

{ T_ 1 ( q~ ~ T ) } CMO" {f: fIIiI*,p = SU (hI If- m Tfl") <" } 

where mTf = (1/2T)f7,,f, 1 < p < OO. (CMO stands for Central Mean 
Oscillation.) The average in the norm is the p-th variance of the function f. 
It is analogous to BMO, but takes average only on intervals [- T, T] . If we let 
HAP be the corresponding Hardy space of AP, then 

Theorem 1.2. For 1 <p <oo, l/p + 1/q = 1, (HAP)* =CMOq. 

Theorem 1.3. For 1 < p < oo, and for any real f, f + if E HAP if and only if 
f* E AP, where f is the conjugate of f, and f* is the nontangential maximal 
function of f. 

The case 1 < p < 2 was proved in [4], and the general case was ob- 
tained by Garcia-Cuerva in [6]. Note that for p = 1, Theorem 1.2 is the 
Fefferman-Stein's duality theorem, and Theorem 1.3 is the Burkholder, Gundy, 
Silverstein's maximal function characterization of H1 . 
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While the space BP enjoys the properties of L?? under duality and Hilbert 
transformation, we will show in this paper that B 2, on the other hand, will be- 
have like L2 in connection with the Fourier transformation and the Plancherel 
Theorem. 

In the Schwartz distributional sense, the Wiener transformation of f satis- 
fies (Wf)' = f where ' is the derivative, and denotes the inverse Fourier 
transformation (Proposition 3.1). We prove 

Theorem 1.4. The Wiener transformation W: B 2 V2 is an isomorphism with 

l Wl= (h(O)+ j h(x)dx) ,IIW l=(h(1)) 1/2 

where 

h(x)= (snx , x > O and h(x) =suph(t). 
7r x/ t>x 

The isomorphism can be rewritten as 

C2 SUp iT f Il < sup 2|'g| < cl sup 2 fl Vf E B 

It is an extension of (1.1), and is also an extension of Theorem 5.2 in [9] 
where the limit supremum is considered. The proof follows from some more 
general inequalities which will have independent interest in connection with 
ergodic theory. 

2. SOME INEQUALITIES 

For a nonnegative continuous function h on [0, o,), we will let h(x) = 

supt>x h(t), the smallest decreasing majorant of h. 

Theorem 2.1. Let h be a nonnegative continuous function on [0, xc) such that 
c= h (0) + f1??I h(x) dx < ox. Then for any nonnegative Borel measurable f, 

fOO 1 
sup f(Tx)h(x) dx < c sup / f(x)dx, 
T>1 j T>1 T J 

and c1 is the best estimate for the inequality. 

Proof. The inequality is obvious if the right side is infinite, hence we may 
assume without loss of generality that SUPT> l (1 / T) f0T f(x) dx = 1 . It follows 
that 
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Forany b> 1, T> 1, 
b 

Jf(Tx) h(x) dx 

/ob 

ff(Tx)h(x)dx+ (h(b) f(Tx)dx-h(1) F(Tx)dx 

- fb (f f(Tt) dt) dh(x)) 

b 

by integration by parts on J 

b~~~~~~~~~~~~~~ 
(h(O) - h(l)) f(Tx) dx + (h(b)b - dh(x)) 

by (2.1) and the decreasing property of h 

? (h(O) - h(1)) + (h(1) + f h(x) dx) 

b 

= h(O) + - h(x) dx. 

By letting b -- 00, the inequality follows. The following lemma will imply that 
c1 is the best estimate. 

Lemma 2.2. Let h be as above, then for any e > 0, there exists f such that 
SupT>l(/T)of < 1, and 

sup j f(Tx)h(x)dx > h(O)+Jh(x)dx-e. 
T>1 I 

Proof. Let xo be the largest x such that h(x) = h(0) . Let s = max{1 ,xo}, 
and let A = {x > s: h(x) :$ h(x)} . Then A is the disjoint union of a sequence 
of intervals {(ai, bi)} such that maxa<x<b h(x) = h(bi) . For simplicity, we 
let A = (a, b), the general case is similar. 

Let 

r7 =f/s(h(x) = h(x) dx = (h(b)(b - a) -jbh(x) dx) 

For 0 < e < ii, by the continuity of h and the choice of b, we can find E 
3 > 0 such that 

rb+6 

t1-E < (h(b) - El )(b - a) - h h(x) dx 

O < h(b) -,e1 < h(x), Vb < x < b + J, 

O<h(xo)-e <h(x), Vxo< x<xo + , 

0< f h(x)dx<e, 
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and that [xo,xo+3]n[b,b+3] = 0. Define 

max{1,xo} X E [X + ), 

a b-a x e [b, b+ J), 
1,(x) xe [s,oo)\([xo,xO+3)u[a,b+J)), 

0 O, otherwise. 

xo xo+ 8 a ~~ ~~~~b b+6 

FIGURE 1. 

(See Figure 1 for the case xo < 2.) It is a direct calculation that SUPT>lI (1I/T) 

fjf ? 1, and 

ff1(x)h(x) dx > h(O) + j h(x) dx = ke. 

where k can be predetermined (k = 2 + xo for the case xo0> 1 and k = 2 
for the case xo< 1) . 

For the reverse inequality, we have the following: 

Theorem 2.3. Let h be a nonnegative continuous function on [0, oc) such that 
for x E[O, 1], h(x)?>h(1) =c2,I and xh(x) ? c2,I then for any nonnegative 
Borel measurable f on [0, oc), 

I T 00~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

c2 sup ~ Tf(x) dx < sup f f(Tx) h(x) dx. 

Moreover, c2 is the best estimate for the inequality. 
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Proof. Note that for T > 1 

c2 f(x) dx = ff(Tx)h(l) dx 

< f(Tx)h(x)dx 

r00 

< J f(Tx)h(x) dx. 

The inequality follows by taking supremum for T > 1 on both sides. To show 
that c2 is the best estimate, we will construct for any given e > 0, an f2 such 
that Sup T>l(l/T)f0 f2 = 1 and 

sup f2(Tx)h(x) dx< C2 + . 
T>10 

Let 0 < 35 < I be such that (l/(l - J))c2 ?c2+ , and let 

f= ~X16'1 

A direct calculation will show that f2 is the required function. 

Remark 2.1. The continuity of h in the above theorems is only used to obtain 
the best constants for the estimates. 

Remark 2.2. The function h(x) = Isinx/xlp, p > 1, and the Poisson kernel 
p(X) = 1/7(l + x2) satisfies Theorem 2.1, and Theorem 2.3. The inequalities 
for h(x) = Isinx/x12 will be used in the next section. The case for p(x) can 
be used to estimate the harmonic extensions of f [4]. 

Remark 2.3. By assuming that h satisfies conditions in Theorem 2.1 and that 
there exists xo such that 

(2.2) maxxh(x) =x h(xo) =c' and h(x) > h(xo), Vxe [0,xo], 
x>O 2 

the above proof can be adjusted to show that 

C2 im f(x)dx < lim f(Tx)h(x)dx < cl lim /f(x)dx 
T--oo T., T-oo oT--oo T 

for any nonnegative Borel measurable f on [0, oo) , and that cl = fo' h(x) dx, 
c/ are sharp constants [9, Theorem 4.5, Theorem 4.6]. 

Remark 2.4. Let h be a complex valued function on [0, xc) such that 
(i) h has finite variation on any closed subintervals of [0, xc), 
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It was proved in [8, Lemma 3.2] that 

lim f(Tx)h(x) dx = c lim ? f f(x) dx, 
T-0 Joo T-oo T 1O 

where c = fg0? h(x) dx, provided that limT,O (II/T) f6 f(x) dx exists. 

3. WIENER TRANSFORMATION ON B 

We will use the following convention: the Fourier transformation of f is 
defined by 

f(u) f(x)eU dx, 
-00 

and the inverse Fourier transformation of g is 

r00 g(X) =- g(u)eUX du. 

Also we let 
Aeg(X) = g(X + E) - g(X - E), 

A+g(x) = g(X + E) - g(X), 

Aeg(x) = g(x) - g(x -) 

The space B2 is contained in L 2(R, dx/(1 + X2)) [9, Proposition 2.1], 
2 hence for f E B , the integral 

I-00 I fx)2 f+f 'dx 

exists. This implies that 

-1 + 1? f(x)elux dx 
-oo 1 iX 

converges in square mean. According to Wiener [12], we define the transforma- 
tion Wf = g as 

g (u) = Wf(u) = f ix dx+f f(x)e dx) 

and call g the Wiener transformation of f . We remark that the last term is 
used only to adjust the convergence of the integral. 

Let S denote the space of rapid decreasing functions and let S' be its dual, 
the class of tempered distributions. 

Proposition 3.1. Iff E B2, then f, Wf E S', and (Wf)' = f, where the 
derivative and f is taken in the distributional sense. 
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Proof. Let h E S, then 

((Wf),h)= - (f(x) dx h'(u) du 

+ 

f 

| 

(| f(x)eiUx dx) 

h(u) du 

+ f(x)h(x) dx + 

f 
f(x)h(x) dx 

(f,h) = (f,h). 
This implies that (Wf)' = f. 

Theorem 3.2. The Wiener transformation W is an isomorphism from B2 onto 
V2 with 

2 2/ / 
11 Wil h(O) + h (x)dx) l 1=hl)12 

where h (x) =2sin X/1X, x > 0, and h(x) =supt>x h(x). 

Proof. Let f E B2, g = W(f), it follows that 

I 00 2 sin ex 
A,sg(u) = 21 x f(x) elux dx, 

and 

1 | 2 1 f I 2f(X5n 1 ex 
I ~,f A,g(u)I du = (x)I 2 dx 

-00 . 2 
251n x 

lff(x/c)i x2- dx." 

If we let 

f1(X) = (2) (if(X)12 + If(-X) 12), x > 0, 

and 
2 h()2sin x xO 

7xX 

then Theorem 2.1, 2.3 imply that 

I T ~2 0 1225sin2x 
C2sup IfxI(x)I dx sup s If(Tx) I -d 

T> 1 2 T _T T> 1 -oo 7rX2 
c2 sup M d~< lspdx, T>1 __ ~~~T>1- 2TxT 

<Clu l I If (x)12 dx 

where c1 = h(O) + f1 h(x) dx, C2 = h(l), i.e. 

C, liIfiI2 < I, Wfj12 2?< C, lif IB2 
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Hence W is an isomorphism, that 1IWIl = C1/2, 11W- 
I 

= C2 1/2 follow from 
the fact that they are the best estimate for the inequalities. 

It remains to show that W is a surjection. For this, we observe that A+g = 

Teg - g E L2 for all e E R. Define Fe so that 

(3.1) (e ) Et I) x e Al (u du 
-00 

We claim that Fe is independent of e. Indeed, let q $ e, it is easy to check 
that 

A+g(t + ,j) - L4g(t) = A+g(t + e) - A+g(t). g(t +q) 
- 

+g( 9 9 

By taking the Fourier transformation, we have 

(e lX - 1)(el6x - 1)Fj(x) = (el9x - 1)(e'Ex - 1)F, (x). 

This implies that F6 is independent of e. We denote it by F instead. 
Let f(x) = ixF(x), it is straightforward to check that c2|IfI112 ?< IIgI22 < 

2~~~~~~~~~~~ oo, and hence f e B . To show that W(f) = g, we observe that 

A6(Wf)(u)= 2 ff(x) ix e dx 
-00 ix 

= 2 f F(x)(2 sin ex)elux dx 

= 
kg(u) , 

2 i.e. A,(Wf-g) = O. This implies that Wf = g in V2. 
A function g on R has bounded variation if and only if g e V [7, 11]. In 

this case 
1(00 1(~~~~00 

suP -_ Aegl = lim - IA,gl = lim - 1 A6gl 

and equals the total variation of g. The Stieltjes integral f f dg for g E V1 
is well known. The development of the correspondent theory for g e VP is 

2 only partially successful (see Young [13]). Here we observe that for f E L 

g E L2 such that g' E L2 

(3.2) f 2 (f AJf(u)A) g(u) du) de 

1 - f (I (f00 ex _ - 21(X) )d) de 

- Zr - A f(x)g(-x) (fJo (e 2 1)2 d) dx 

2 - 2 f(-eix)f (x)g(-x) dx 
- _2nf(xd 
= - ln2 /f(x)kd(-x) d-d 



420 YONG-ZHUO CHEN AND KA-SING LAU 

This leads us to define for g E V2 

(3.3) | f dg = cf 2 0 
(f ACf(u)AT g(u)du) 

whenever the integral converges, where c = (-2 ln 2) . In [12], Wiener has in- 

terpreted the integral f0i e-iux dg(u), g E V2 as first defining it as a formal 
integration by parts on finite intervals, and follows by taking the Cesero limit. 
The definition in (3.3) simplifies the meaning of the above integral. Moreover, 
we have 

Proposition 3.3. Let g E V , then 

00~ ~ ~~- 
e dg(u) =W (g) a.e. 

-00 

Proof. Note that for almost all x, 

e dg(u) c 1 e)( e A g (u)du) de 

-00 - 2 
- (e- 1)F(x) de 

= ixF(x) = W' I(g)(x) 

(where F(x) is defined as in the proof of Theorem 3.2). 

In [3, Theorem IX], Beurling proved that the Fourier transformation of A2 
is the class of continuous functions g in 

U2 = j1g11 = 
11gIIL2 + 3/2A g(u)IIL2 de < oo} 

Moreover 

IIfIIA2 < nl If IIU2 < 6IIfIIA2 

It is not difficult to see from Beurling's proof that the assumption that g is 
continuous is redundant. Indeed, let f = 4, then 

(e- Ix _)f(x) = L (f eiuxLgg(u)du) 

By [3, p. 14 and p. 24], Ijfj112 < (1/27r)jjgjI22 . This implies that fE A2 and 

hence in L1 . Therefore g = f is continuous. 
If we define the duality of V2 and U2 by 

(g,l = dg, geV, le U, 
a00 

as in (3.3), then we have the following proposition. 
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Proposition 3.4. Let g E V2, 1 E U2, then 

(g, ) = (W- )g, 

Moreover (U ) is isomorphic to V2 under the above duality. 
Proof. The equality follows from a direct verification as in (3.2). The isomor- 

phism of (U2)* and V2 is a consequence of Theorem 3.2, Beurling's Theorem 
and the above duality. 
Remark 3.1. The duality and Wiener transformation can be summarized in the 
following diagram: 

w-1 
(A2)* 

2- 
V2 U2* 

w 
A 2 

A U2. 
v 
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